Swift Observations of GRB 090807 J. K. Cannizzo (NASA/UMBC), H. A. Krimm (GSFC/USRA), S. D. Barthelmy (GSFC), R. Margutti (Univ Bicocca & OAB), C. A. Swenson (PSU), for the Swift Team

1 Introduction

BAT triggered on a long burst, GRB 090807, at 15:00:27 UT (Trigger 359378) (Cannizzo, et al., GCN Circ. 9746). Swift slewed immediately to the burst. The BAT on-board calculated location is RA, Dec = (273.744, +10.281), which is {18h 14m 59s; +10d 16' 51"} (J2000) with an uncertainty of 3 arcmin (radius, 90% containment).

The XRT began observing the field at 15:03:00.5 UT, at T + 153.5 s. and found a bright, fading, uncatalogued X-ray source with an enhanced position: RA, Dec = (273.7438, +10.2665) deg, or {18h 14m 58.51s; +10d 15' 59.3"} (J2000) with $\sigma = 2.4$ arcsec (radius, 90% containment). This location is 52 arcsec from the BAT position.

A power-law fit to a spectrum gives a column density in excess of the Galactic value $(8.6 \times 10^{20} \text{ cm}^{-2}, \text{Kalberla et al. 2005})$, with an excess column of $2(+1.68/-1.50) \times 10^{21} \text{ cm}^{-2}$ (90% confidence).

The initial flux in the 2.5 s image was $8.55 \times 10^{-9} \text{ erg cm}^{-2} \text{ s}^{-1} (0.2 - 10 \text{ keV}).$

UVOT took a finding chart exposure of nominal 150 s with the White filter starting at T + 163 s. No credible afterglow candidate was found. The $2.7' \times 2.7'$ sub-image covers 100% of the XRT error circle. The 3σ U.L. is ~ 19.2 mag. The $8' \times 8'$ region for the list of sources generated on-board covers 100% of the XRT error circle. The list of sources is typically complete to about 18.0 mag. No correction has been made for the expected extinction corresponding to E(B - V) = 0.18.

There are two reports of upper limits on the prompt optical emission (RIMOTS at T+2.2 min – Kono et al., *GCN Circ.* 9747; MITSuME at T+3 min 8s – Yoshida et al., *GCN Circ.* 9752) and one report of an upper limit in the optical afterglow (2-m Liverpool Telescope at T+8.75 h – Guidorzi et al., *GCN Circ.* 9753).

2 BAT Observation and Analysis

Using the data set from T - 239 to T + 423 s, further analysis of GRB 090807 was performed by the *Swift* team (Ukwatta, et al., GCN Circ. 9749). The BAT ground-calculated position is RA, Dec = (273.741, +10.279) deg, or {18h 14m 57.8s; +10d 16' 45.9"} (J2000) with $\sigma = 1.8$ arcmin, (radius, sys+stat, 90% containment). The partial coding was 64%.

The mask-weighted light curve shows a complex structure lasting from T - 5 to T + 150 s with at least five peaks superimposed on a broad, soft and slowly varying background. There is an additional peak at T + 185 s which corresponds to a large flare seen by XRT. There is also possible precursor activity from T - 200 to T - 80 s. T_{90} (15 - 350 keV) is 140.8 ± 13.1 s (estimated error including systematics).

The time-averaged spectrum from T - 9.5 to T + 151.5 s is best fit by a simple power-law model. The power law index of the time-averaged spectrum is 2.25 ± 0.14 . The fluence in the 15 - 150 keV band is $2.2(\pm 0.2) \times 10^{-6}$ erg cm⁻². The 1 s peak photon flux measured from T + 41.96 s in the 15-150 keV band is 0.7 ± 0.2 ph cm⁻² s⁻¹. All the quoted errors are at the 90% confidence level?

3 XRT Observation and Analysis

Using 1531 s of XRT Photon Counting mode data and 2 UVOT images for GRB 090807 (Beardmore et al., *GCN Circ.* 9748), we find an astrometrically corrected X-ray position (using the XRT-UVOT alignment and matching UVOT field sources to the USNO-B1 catalogue): RA, Dec = (273.74377, +10.26583), or

 $\{18h \ 14m \ 58.50s; +10d \ 15' \ 57.0"\}$ (J2000)

with $\sigma = 1.8$ arcsec (radius, 90% confidence).

Subsequent analysis was carried out with 149 s of Windowed Timing (WT) and 1.5 ks of Photon Counting (PC) mode data (Margutti et al. GCN Circ. 9750), respectively, between 154 s and 1.9 ks after the trigger.

The light curve shows a large flare peaking around 185 s which was also detected in 15 - 150 keV (BAT). The underlying light curve decays with a power-law index of 5.0 ± 0.5 . Around T + 580 s the decay flattens, to a slope of 0.87 ± 0.42 .

The spectrum extracted from WT data can be modelled with an absorbed simple power-law, with $\Gamma = 2.2 \pm 0.1$ and $N_H = (3.0 \pm 0.2) \times 10^{21}$ cm⁻² in excess of the Galactic column in this direction which is 8.6×10^{20} cm⁻² (Kalberla et al. 2005). A spectrum extracted from PC data in the time interval from T + 310 s to T + 1840 s has a best-fitting photon index of 2.6 ± 0.4 and a best-fitting absorption column of $N_H = (3.3 \pm 0.1) \times 10^{21}$ cm⁻² in excess of the Galactic value. The counts to observed (unabsorbed) 0.3 - 10 keV flux conversion factor deduced from this spectrum is 3.1×10^{-11} (8.4×10^{-11}) erg cm⁻² count⁻¹.

4 UVOT Observation and Analysis

The Swift/UVOT began settled observations of the field of GRB 090807 at T + 164 s (Swenson et al., *GCN Circ.* 9751) No optical afterglow consistent with the XRT position is detected in the initial UVOT exposures. Preliminary 3σ UL's using the UVOT photometric system (Poole et al. 2008, MNRAS, 383, 627) for the first finding chart (FC) exposure and subsequent exposures are:

Filter	T_start(s)	T_stop(s)	Exp(s)	Mag
white_FC	164	313	147	>21.2
u_FC	322	571	246	>20.1
white	164	1026	295	>21.1
u	322	571	246	>20.1

The values quoted above are not corrected for the Galactic extinction due to the reddening of E(B-V) = 0.18 in the direction of the burst (Schlegel et al. 1998).

Figure 1: BAT Lightcurve. The light curve in the 4 individual plus total energy bands (15 - 25 keV, 25 - 50, 50 - 100, 100 - 350, and 15 - 350).

Figure 2: XRT Lightcurve. A broken powerlaw fit gives: $\alpha_1 = -4.9 \pm 0.2$, $t_{\text{break}, 1} = 600$ s, $\alpha_2 = -0.37 \pm 0.05$, $t_{\text{break}, 2} = 15 \pm 1$ ks, $\alpha_3 = -1.9 \pm 0.2$. A large flare is seen, peaking around 185 s (detected by BAT as well); there is also late time (7 ks) flaring activity. The broken power law fit excludes the time intervals 176 - 271 s and 5390 - 7500 s which are dominated by flaring activity.