Swift Observations of GRB 090530

J. K. Cannizzo (NASA/UMBC), M. Stamatikos (NASA/ORAU),
V. Mangano (INAF-IASFPA), P. Schady (MSSL-UCL), for the Swift Team

1 Introduction

BAT triggered on a long burst, GRB 090530, at 03:18:18 UT (Trigger 353567) (Cannizzo, et al., GCN Circ. 9438). Swift slewed immediately to the burst. The BAT light curve shows a single peak with a duration of about 10 s. The peak count rate was \(\sim 5000 \, \text{c s}^{-1} \) (15 \(-\) 350 keV), at \(\sim T + 0 \) s. XRT began observing the field at 03:19:33.1 UT, at \(T + 74.7 \) s, and found a bright, fading, uncatalogued X-ray source located at RA, Dec = (179.41927, 26.59282) deg, or \{11h 57m 40.62s, +26d 35' 34.2"\} (J2000) with \(\sigma = 3.9 \) arcsec (radius, 90\% containment). This is 84 arcsec from the BAT position. A power-law fit to a spectrum gives a column density in excess of the Galactic value \((1.78 \times 10^{20} \, \text{cm}^{-2}) \), Kalberla et al. 2005), with an excess column of \(2.1(+2.01/ -1.71) \times 10^{21} \, \text{cm}^{-2} \) (90\% confidence). The initial flux in the 2.5 s image was \(6.42 \times 10^{-10} \, \text{erg cm}^{-2} \, \text{s}^{-1} \) (0.2 \(-\) 10 keV).

UVOT took a finding chart exposure of 150 s with the White filter starting at \(T + 83 \) s. There is a candidate afterglow in the rapidly available 2.7' \times 2.7' sub-image at (179.41876, 26.59405) deg, or \{11:57:40.50; +26:35:38.6\} (J2000) with \(\sigma = 0.75 \) arc sec (90\% containment). This is 4.7 arc sec from the XRT position. The estimated magnitude is 17.39 \(\pm 0.14 \). No correction has been made for the expected extinction corresponding to \(E(B-V) = 0.02 \).

This burst has been also observed in the optical and NIR by ROTSE-IIIb (Flewelling et al., GCN Circ. 9439), 1.3m PAIRITEL (Morgan et al., GCN Circ. 9440), 0.3m GRAS002 (Nissinen & Hentunen, GCN Circ. 9441, 9442), MOSCA (Malesani et al., GCN Circ. 9452), 2.2m GROND (Rossi et al., GCN Circ. 9458), 1.0m Mt. Lemmon (Im & Urata, GCN Circ. 9459), 0.4m GRT (Sakamoto et al., GCN Circ. 9466), and RAPTOR (Wren et al., GCN Circ. 9478).

2 BAT Observation and Analysis

Using the data set from \(T - 60 \) to \(T + 243 \) s, further analysis of GRB 090530 was performed by the Swift team (Palmer et al., GCN Circ. 9443). The BAT ground-calculated position is RA, Dec = (179.400, 26.590) deg, or \{11h 57m 36.0s, +26d 35' 23.0"\} (J2000) with \(\sigma = 1.9 \) arcmin, (radius, sys+stat, 90\% containment). The partial coding was 41\%.

The mask-weighted light curve shows a FRED-like peak starting at \(\sim T - 0.3 \) s, peaking at \(\sim T + 0.2 \) s, and returning almost to background. Then a second and much smaller peak starts at \(\sim T + 35 \) s, peaks at \(\sim T + 45 \) s, and ends at \(\sim T + 50 \) s. There is a \(\sim 3 \sigma \) precursor peak at \(T - 4 \) s. \(T_{90} \) (15 \(-\) 350 keV) is 48 \(\pm 36 \) s (estimated error including systematics).

The time-averaged spectrum from \(T - 12.2 \) to \(T + 51.8 \) s is best fit by a simple power-law model. The power law index of the time-averaged spectrum is 1.61 \(\pm 0.17 \). The fluence in the 15 \(-\) 150 keV band is \(1.1(\pm0.1) \times 10^{-6} \, \text{erg cm}^{-2} \). The 1 s peak photon flux measured from \(T + 0 \) s in the 15 \(-\) 150 keV band is \(2.5 \pm 0.3 \) ph cm\(^{-2}\) s\(^{-1}\). All the quoted errors are at the 90\% confidence level.

\(^1\)http://isdc.unige.ch/Soft/ibas/results/triggers/spiacs/2009-05/2009-05-30T03-18-18.00-00000-00000-0.png
3 XRT Observation and Analysis

Using 646 s of XRT Photon Counting mode data and 1 UVOT images for GRB 090530 (Beardmore et al., *GCN Circ.* 9445), the astrometrically corrected X-ray position (using the XRT-UVOT alignment and matching UVOT field sources to the USNO-B1 catalogue): RA, Dec = (179.41846, +26.593410) deg, or {11h 57m 40.43s; +26d 35’ 36.3”} (J2000) with $\sigma = 1.5$ arcsec (radius, 90% confidence).

Subsequent analysis was carried out from the first five orbits of Swift-XRT data (Mangano et al., *GCN Circ.* 9451) consisting of 22 s WT data from $T + 81$ to $T + 103$ s and 9 ks in PC data from $T + 105$ s to $T + 24.4$ ks.

The $0.3 – 10$ keV X-ray light curve is best fitted by a broken powerlaw with early decay index of about -5.7, late decay index -0.60 ± 0.04 and a break at $\sim T + 140$ s. In the first orbit a small amplitude flare is detected at $T + 300$ s. Flaring activity is also visible along the later decay. If decaying at the present rate, the predicted rate after 24h from the trigger is 2.0×10^{-2} c s$^{-1}$.

The average initial WT spectrum (covering the initial steep decay) can be modeled as an absorbed power-law with index 2.3(+0.5 – 0.4), absorbing column $N_H < 1.1 \times 10^{21}$ cm$^{-2}$ (3σ UL) and observed (unabsorbed) average flux in the $0.3 – 10$ keV energy range of $2.9(3.6) \times 10^{-10}$ erg cm$^{-2}$ s$^{-1}$. The average PC spectrum (roughly covering the flatter part of the afterglow) is best fitted by an absorbed power-law with index 2.00 ± 0.15 The absorbing column is $N_H = (8.2 – 2.9 + 3.6) \times 10^{20}$ cm$^{-2}$ in excess with respect to the Galactic value of 1.78×10^{20} cm$^{-2}$ (Kalberla et al. 2005). The average observed (unabsorbed) flux is $4.0(4.9) \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$. The count-rate to flux conversion factor is 5.4×10^{-11}. All quoted errors are at 90% confidence level.

4 UVOT Observation and Analysis

The Swift/UVOT began settled observations of the field of GRB 090530 at $T + 158$ s (Schady et al., *GCN Circ.* 9438) and a decaying source was detected in all UVOT filters within the XRT error circle (Beardmore et al., *GCN Circ.* 9445), putting an upper limit on the redshift of $z < 1.7$.

The source initially rises, and at $\sim T + 100$ s, and decays at a constant rate of 0.73 ± 0.03 for the duration of intial UVOT observations, to $\sim T + 20$ ks. The best UVOT position is RA, Dec = (179.41873, +26.59400) deg, or {11:57:40.50; +26:35:38.4} (J2000) with $\sigma = 0.5$ arcsec (radius, 90% confidence, statistical + systematic), consistent with the ROTSE-IIIb afterglow position (Flewelling et al., *GCN Circ.* 9439).

The UVOT magnitudes are:

<table>
<thead>
<tr>
<th>Filter</th>
<th>T_start(s)</th>
<th>T_stop(s)</th>
<th>Exp(s)</th>
<th>Mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>white</td>
<td>83</td>
<td>233</td>
<td>147</td>
<td>17.43 +/- 0.03</td>
</tr>
<tr>
<td>v</td>
<td>624</td>
<td>644</td>
<td>19</td>
<td>17.69 +/- 0.29</td>
</tr>
<tr>
<td>b</td>
<td>550</td>
<td>570</td>
<td>19</td>
<td>18.60 +/- 0.27</td>
</tr>
<tr>
<td>u</td>
<td>295</td>
<td>545</td>
<td>246</td>
<td>17.46 +/- 0.05</td>
</tr>
<tr>
<td>uwl</td>
<td>5735</td>
<td>5935</td>
<td>197</td>
<td>20.15 +/- 0.37</td>
</tr>
<tr>
<td>uvm2</td>
<td>5530</td>
<td>11687</td>
<td>1082</td>
<td>20.31 +/- 0.22</td>
</tr>
<tr>
<td>uvm2</td>
<td>5121</td>
<td>17468</td>
<td>1279</td>
<td>21.31 +/- 0.32</td>
</tr>
</tbody>
</table>

The values quoted above are not corrected for the Galactic extinction due to the reddening of
Figure 1: BAT Lightcurve. The light curve in the 4 individual plus total energy bands (15 – 25 keV, 25 – 50, 50 – 100, 100 – 350, and 15 – 350).

$E(B-V) = 0.02$ in the direction of the burst (Schlegel et al. 1998). The photometry is on the UVOT photometric system described in Poole et al. (2008, MNRAS, 383, 627).
Figure 2: XRT Lightcurve. A broken powerlaw fit gives: $\alpha_1 = 5.7$, $t_{\text{break}, 1} = 135 \pm 10$ s, $\alpha_2 = 0.60 \pm 0.04$, $t_{\text{break}, 2} = 18.5 \pm 1$ ks, $\alpha_3 = 0.93 \pm 0.15$.

Figure 3: UVOT Lightcurve. A broken powerlaw fit gives $\alpha = 0.66 \pm 0.02(1\sigma)$.