Swift Observation of GRB 070125

J. Racusin (PSU), J. Cummings, F. Marshall (NASA/GSFC), for the Swift Team

1 Introduction

GRB070125 was detected by Mars Odyssey (HEND and GRS), Suzaku (WAM), INTEGRAL (SPI-ACS), and RHESSI at 07:20:45 UT during a Swift slew. BAT detected the source marginally after the slew, but did not trigger. The marginal BAT source is coincident with the IPN triangulation (Hurley *et al.*, *GCN Circ.* 6024) of the burst. With processing, the source is detectable in the first 4 BAT 64-second images (15-50 keV) after the slew, or 6 minutes after T0. $T_{90} = 60$ seconds. Swift observed GRB70125 as a ToO observation beginning at 20:18:48 UT, 46.7 ks after the trigger.

Our best position is the XRT location RA(J2000) = 117.82532deg (7h51m18.08s), Dec(J2000) = +31.1506deg (+31d09'02.2'') with an error radius of 3.8 arcsec (90% confidence, including boresight uncertainties).

2 BAT Observation and Analysis

GRB070125 occured while Swift was slewing and was not in the BAT field-of-view during the beginning of the prompt emission. BAT did not trigger, but did detect GRB070125 in 4 64-seconds images after the slew with a significance of 8.2 sigma. The BAT ground-calculated position is $RA(J2000) = 117.850 deg \ (07h51m24s), Dec(J2000) = +31.140 deg \ (-31d08'24.0'')$ with an error radius of 2.5 arcmin, (systematic and statistical, 90% containment).

3 XRT Observations and Analysis

Using the data from the first four orbits of XRT data of GRB 070125 (5.4 ksec in Photon Counting mode), the refined XRT position is RA(J2000) = 117.82541deg (7h51m18.10s), Dec(J2000) = +31.1509deg (+31d09'03.2"), with an error radius of 3.7 arcsec (90% confidence, including boresight uncertainties). This position is 85 arcsec of the initial BAT position, and 4.4 arcsec from the optical afterglow candidate, reported by Cenko *et al.*, *GCN Circ.* 6034.

The $0.3 - 10 \ keV$ light curve (Fig.1) begins at 46 ks after the burst and shows a shallow slope of 0.9 ± 0.4 . At $1.2 \pm 0.3 \times 10^5 sec$ the light curve breaks with a slope of 2.5 ± 0.50 .

Two segments of the X-ray lightcurve can be modeled with an absorbed power-law with spectral indices of 2.05 ± 0.25 , and 2.10 ± 0.28 , respectively. The fit NH column density is $8.6 \pm 5.8 \times 10^{20} cm^{-2}$ consistent with galactic column density ($4.8 \times 10^{20} cm^{-2}$). The average observed (unabsorbed) flux over $0.3 - 10 \ keV$ for this spectrum (spanning a time of $46 - 120 \ ks$, and $120 - 227 \ ks$ after the trigger) is 3.0×10^{-12} and $6.5 \times 10^{-13} \ ergs/cm^2/sec$, respectively.

4 UVOT Observation and Analysis

The afterglow of GRB 070125 (Hurley *et al.*, *GCN Circ.* 6024) has been detected in all 6 UVOT filters ranging from V (central wavelength of 546 nm) to UWW2 (central wavelength of 193 nm). The decay in the V filter is consistent with a 1/t decay rate. Detection in the UVW2 filter requires a redshift of < 1.5, which is consistent with earlier suggestions by Prochaska et al. (*GCN Circ.* 6031 and *GCN Circ.* 6032) and Pelangeon and Atteia (*GCN Circ.* 6033).

Figure 1: XRT Lightcurve. Counts/sec in the 0.3-10 keV band: Photon Counting mode (red). The approximate conversion is 1 count/sec = $\sim 2.5 \times 10^{-12} \ ergs/cm^2/sec$.

The Table 1 gives the measured magnitudes for the currently available data. T_start and T_end are the start and stop times of the summed exposures in seconds from the trigger. No correction has been made for the expected Galactic reddening of E(B - V) = 0.05.

Filter	Start	Stop	Exposure	Mag	Error
V	46685	53261	1736	18.54	0.06
V	58269	63986	1590	18.74	0.07
V	116966	117176	205	19.26	0.27
В	47550	54163	1674	18.92	0.03
В	59126	59947	798	19.03	0.06
UVW2	116119	116959	840	19.26	0.10

Table 1: Measured magnitudes from UVOT observations